Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An improved high throughput sequencing method for studying oomycete communities.

Identifieur interne : 000F27 ( Main/Exploration ); précédent : 000F26; suivant : 000F28

An improved high throughput sequencing method for studying oomycete communities.

Auteurs : Rumakanta Sapkota [Danemark] ; Mogens Nicolaisen [Danemark]

Source :

RBID : pubmed:25602160

Descripteurs français

English descriptors

Abstract

Culture-independent studies using next generation sequencing have revolutionized microbial ecology, however, oomycete ecology in soils is severely lagging behind. The aim of this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomycete communities. The well-known primer sets ITS4, ITS6 and ITS7 were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, but with limited success. We were able to increase the proportion of retrieved oomycete sequences dramatically mainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different agricultural fields in Denmark, and 11 samples from carrot tissue with symptoms of Pythium infection. Sequence data from the Pythium and Phytophthora mock communities showed that our strategy successfully detected all included species. Taxonomic assignments of OTUs from 26 soil sample showed that 95% of the sequences could be assigned to oomycetes including Pythium, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all 26 soil samples showing the versatility of the strategy. A large diversity of Pythium species including pathogenic and saprophytic species were dominating in cultivated soil. Finally, we analyzed amplicons from carrots with symptoms of cavity spot. This resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot, thus demonstrating the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification.

DOI: 10.1016/j.mimet.2015.01.013
PubMed: 25602160


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An improved high throughput sequencing method for studying oomycete communities.</title>
<author>
<name sortKey="Sapkota, Rumakanta" sort="Sapkota, Rumakanta" uniqKey="Sapkota R" first="Rumakanta" last="Sapkota">Rumakanta Sapkota</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse</wicri:regionArea>
<wicri:noRegion>DK-4200 Slagelse</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nicolaisen, Mogens" sort="Nicolaisen, Mogens" uniqKey="Nicolaisen M" first="Mogens" last="Nicolaisen">Mogens Nicolaisen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse, Denmark. Electronic address: mn@agro.au.dk.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse</wicri:regionArea>
<wicri:noRegion>DK-4200 Slagelse</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25602160</idno>
<idno type="pmid">25602160</idno>
<idno type="doi">10.1016/j.mimet.2015.01.013</idno>
<idno type="wicri:Area/Main/Corpus">000F02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F02</idno>
<idno type="wicri:Area/Main/Curation">000F02</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F02</idno>
<idno type="wicri:Area/Main/Exploration">000F02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An improved high throughput sequencing method for studying oomycete communities.</title>
<author>
<name sortKey="Sapkota, Rumakanta" sort="Sapkota, Rumakanta" uniqKey="Sapkota R" first="Rumakanta" last="Sapkota">Rumakanta Sapkota</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse</wicri:regionArea>
<wicri:noRegion>DK-4200 Slagelse</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nicolaisen, Mogens" sort="Nicolaisen, Mogens" uniqKey="Nicolaisen M" first="Mogens" last="Nicolaisen">Mogens Nicolaisen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse, Denmark. Electronic address: mn@agro.au.dk.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse</wicri:regionArea>
<wicri:noRegion>DK-4200 Slagelse</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of microbiological methods</title>
<idno type="eISSN">1872-8359</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aphanomyces (genetics)</term>
<term>DNA Barcoding, Taxonomic (MeSH)</term>
<term>DNA Primers (MeSH)</term>
<term>DNA, Ribosomal Spacer (genetics)</term>
<term>Daucus carota (MeSH)</term>
<term>Denmark (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (methods)</term>
<term>Oomycetes (classification)</term>
<term>Oomycetes (genetics)</term>
<term>Peronospora (genetics)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (genetics)</term>
<term>Polymerase Chain Reaction (methods)</term>
<term>Pythium (genetics)</term>
<term>Saprolegnia (genetics)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amorces ADN (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Aphanomyces (génétique)</term>
<term>Codage à barres de l'ADN pour la taxonomie (MeSH)</term>
<term>Danemark (MeSH)</term>
<term>Daucus carota (MeSH)</term>
<term>Espaceur de l'ADN ribosomique (génétique)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Oomycetes (classification)</term>
<term>Oomycetes (génétique)</term>
<term>Peronospora (génétique)</term>
<term>Phytophthora (classification)</term>
<term>Phytophthora (génétique)</term>
<term>Pythium (génétique)</term>
<term>Réaction de polymérisation en chaîne (méthodes)</term>
<term>Saprolegnia (génétique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (méthodes)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Ribosomal Spacer</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Denmark</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Oomycetes</term>
<term>Phytophthora</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aphanomyces</term>
<term>Oomycetes</term>
<term>Peronospora</term>
<term>Phytophthora</term>
<term>Pythium</term>
<term>Saprolegnia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aphanomyces</term>
<term>Espaceur de l'ADN ribosomique</term>
<term>Oomycetes</term>
<term>Peronospora</term>
<term>Phytophthora</term>
<term>Pythium</term>
<term>Saprolegnia</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>High-Throughput Nucleotide Sequencing</term>
<term>Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Réaction de polymérisation en chaîne</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Barcoding, Taxonomic</term>
<term>Daucus carota</term>
<term>Genetic Variation</term>
<term>Sequence Analysis, DNA</term>
<term>Soil Microbiology</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Analyse de séquence d'ADN</term>
<term>Codage à barres de l'ADN pour la taxonomie</term>
<term>Danemark</term>
<term>Daucus carota</term>
<term>Microbiologie du sol</term>
<term>Spécificité d'espèce</term>
<term>Variation génétique</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Danemark</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Culture-independent studies using next generation sequencing have revolutionized microbial ecology, however, oomycete ecology in soils is severely lagging behind. The aim of this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomycete communities. The well-known primer sets ITS4, ITS6 and ITS7 were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, but with limited success. We were able to increase the proportion of retrieved oomycete sequences dramatically mainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different agricultural fields in Denmark, and 11 samples from carrot tissue with symptoms of Pythium infection. Sequence data from the Pythium and Phytophthora mock communities showed that our strategy successfully detected all included species. Taxonomic assignments of OTUs from 26 soil sample showed that 95% of the sequences could be assigned to oomycetes including Pythium, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all 26 soil samples showing the versatility of the strategy. A large diversity of Pythium species including pathogenic and saprophytic species were dominating in cultivated soil. Finally, we analyzed amplicons from carrots with symptoms of cavity spot. This resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot, thus demonstrating the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25602160</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-8359</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>110</Volume>
<PubDate>
<Year>2015</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of microbiological methods</Title>
<ISOAbbreviation>J Microbiol Methods</ISOAbbreviation>
</Journal>
<ArticleTitle>An improved high throughput sequencing method for studying oomycete communities.</ArticleTitle>
<Pagination>
<MedlinePgn>33-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mimet.2015.01.013</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0167-7012(15)00027-5</ELocationID>
<Abstract>
<AbstractText>Culture-independent studies using next generation sequencing have revolutionized microbial ecology, however, oomycete ecology in soils is severely lagging behind. The aim of this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomycete communities. The well-known primer sets ITS4, ITS6 and ITS7 were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, but with limited success. We were able to increase the proportion of retrieved oomycete sequences dramatically mainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different agricultural fields in Denmark, and 11 samples from carrot tissue with symptoms of Pythium infection. Sequence data from the Pythium and Phytophthora mock communities showed that our strategy successfully detected all included species. Taxonomic assignments of OTUs from 26 soil sample showed that 95% of the sequences could be assigned to oomycetes including Pythium, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all 26 soil samples showing the versatility of the strategy. A large diversity of Pythium species including pathogenic and saprophytic species were dominating in cultivated soil. Finally, we analyzed amplicons from carrots with symptoms of cavity spot. This resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot, thus demonstrating the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification. </AbstractText>
<CopyrightInformation>Copyright © 2015. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sapkota</LastName>
<ForeName>Rumakanta</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nicolaisen</LastName>
<ForeName>Mogens</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Aarhus University, Faculty of Science and Technology, Department of Agroecology, Forsøgsvej 1, DK-4200 Slagelse, Denmark. Electronic address: mn@agro.au.dk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>J Microbiol Methods</MedlineTA>
<NlmUniqueID>8306883</NlmUniqueID>
<ISSNLinking>0167-7012</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021903">DNA, Ribosomal Spacer</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D044744" MajorTopicYN="N">Aphanomyces</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058893" MajorTopicYN="N">DNA Barcoding, Taxonomic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021903" MajorTopicYN="N">DNA, Ribosomal Spacer</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018552" MajorTopicYN="Y">Daucus carota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003718" MajorTopicYN="N" Type="Geographic">Denmark</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="Y">High-Throughput Nucleotide Sequencing</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044742" MajorTopicYN="N">Peronospora</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011775" MajorTopicYN="N">Pythium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044762" MajorTopicYN="N">Saprolegnia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="Y">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cavity spot</Keyword>
<Keyword MajorTopicYN="N">ITS</Keyword>
<Keyword MajorTopicYN="N">Next generation sequencing</Keyword>
<Keyword MajorTopicYN="N">Oomycete</Keyword>
<Keyword MajorTopicYN="N">Soil community</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25602160</ArticleId>
<ArticleId IdType="pii">S0167-7012(15)00027-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.mimet.2015.01.013</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
</country>
</list>
<tree>
<country name="Danemark">
<noRegion>
<name sortKey="Sapkota, Rumakanta" sort="Sapkota, Rumakanta" uniqKey="Sapkota R" first="Rumakanta" last="Sapkota">Rumakanta Sapkota</name>
</noRegion>
<name sortKey="Nicolaisen, Mogens" sort="Nicolaisen, Mogens" uniqKey="Nicolaisen M" first="Mogens" last="Nicolaisen">Mogens Nicolaisen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F27 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F27 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25602160
   |texte=   An improved high throughput sequencing method for studying oomycete communities.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25602160" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024